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1. Introduction

In cosmologies where the present universe is realized as a finite point during the cosmic

evolution, the answer to the coincidence question “why it is that today Ωm0 and ΩDE,0

are of the same order of magnitude”, relies on appropriate choice of initial conditions. By

contrast, in a scenario in which the present universe is in its asymptotic era (close to a fixed

point) the answer to the above question reduces to an appropriate choice of the parameters

of the model. However, this latter situation is not easily realized if today’s universe is

accelerating, because:

If the energy density of a perfect fluid with equation of state w > −1/3 of any cosmo-

logical system is conserved, all fixed points of the system with Ωm 6=0 are decelerating.

Indeed, with ρ the energy density of the perfect fluid with conservation equation ρ̇ +

3(1+w)Hρ = 0, the Hubble equation of an arbitrary cosmology can be written in the form

H2 = 2γ(ρ + ρDE), (1.1)

where γ = 4πGN/3. Then, the equation governing ρDE can always be brought into the

form ρ̇DE+3(1+wDE)HρDE = 0, where wDE is time-dependent and distiguishes one model

from the other. It can be easily seen that d(Ωm/ΩDE)/d ln a = 3(Ωm/ΩDE)(wDE −w) and

2q = 1 + 3(wΩm + wDEΩDE), where Ωm = 2γρ/H2, ΩDE = 2γρDE/H2 and q = −ä/aH2.

At the fixed point (denoted by ∗) d(Ωm/ΩDE)/d ln a = 0. For Ωm∗ 6= 0 one obtains

wDE∗ = w, and 2q∗ = 1 + 3w > 0.

Thus, independently of the cosmological model, the only way our accelerating universe

with Ωm∗ 6=0 can be close to a late time fixed point is by violating the standard conservation

equation of matter. In 4-dimensional theories, an accelerating late time cosmological phase

characterized by a frozen ratio of dark matter/dark energy appears in coupled dark energy

scenarios [1] as a result of the interaction of the dark matter with other energy-momentum

components, such as scalar fields. In higher dimensional theories, where the universe is

represented as a 3-brane, this violation could be the result of energy exchange between

the brane and the bulk. In particular in five dimensions, a universe with fixed points
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characterized by Ωm∗ 6=0, q∗<0 was realized in [2] in the context of the Randall-Sundrum

braneworld scenario with energy influx from the bulk. However, these fixed points cannot

represent the present universe, since they have Ωm∗ > 2. In this paper we present a brane-

bulk energy exchange model with induced gravity whose global attractor can represent

today’s universe.

Let us consider an arbitrary cosmology in the form (1.1). Instances of such cosmologies

arise in braneworld models or in theories with modified 4-dimensional actions leading to

H2 = f(ρ), or in cosmologies where ρDE is due to additional fields. Assuming that as a

result of some interaction ρ is not conserved, it will satisfy an equation of the form

ρ̇ + 3(1 + w)Hρ = −T. (1.2)

Then, the equation governing ρDE can always be brought into the form

ρ̇DE + 3(1 + wDE)HρDE = T, (1.3)

where wDE is time and model dependent. Whenever a fixed point of the system satisfies

H∗T∗ 6=0 , ρ̇ = ρ̇DE = 0, (1.4)

one obtains

wDE∗ = −1 − 1 + w

Ω−1
m∗ − 1

. (1.5)

Equation (1.5) is model-independent, in the sense that it does not depend on the form of

T or the function wDE(t). For Ωm∗ < 1 equation (1.5) gives wDE∗ <−1. Specifically, for

w = 0 and Ωm∗ = ΩCDM = 0.3 one obtains wDE∗ = −1.4, while for Ωm∗ = Ωbar = 0.03,

wDE∗ = −1.03.

The cosmology discussed in the present paper has a global attractor of the form (1.4),

(1.5).1 Moreover, the universe during its evolution crosses the wDE = −1 barrier from

higher values. This behavior is favored by several recent model-independent [3] as well as

model-dependent [4 – 7] analyses of the astronomical data.

2. The model

We consider the model described by the gravitational brane-bulk action [8]

S =

∫

d5x
√−g (M3R − Λ) +

∫

d4x
√
−h (m2R̂ − V ), (2.1)

where R, R̂ are the Ricci scalars of the bulk metric gAB and the induced metric hAB =

gAB−nAnB respectively (nA is the unit vector normal to the brane and A,B = 0, 1, 2, 3, 5).

The bulk cosmological constant is Λ/2M3 < 0, the brane tension is V , and the induced-

gravity crossover scale is rc = m2/M3.

We assume the cosmological bulk ansatz

ds2 = −n(t, y)2dt2 + a(t, y)2γijdxidxj + b(t, y)2dy2, (2.2)

1This is in contrast to the models discused in [1] in which equation (1.4) is not satisfied.
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where γij is a maximally symmetric 3-dimensional metric, parametrized by the spatial

curvature k = −1, 0, 1. The non-zero components of the five-dimensional Einstein tensor are

G00 = 3

{

ȧ

a

(

ȧ

a
+

ḃ

b

)

− n2

b2

[

a′′

a
+

a′

a

(

a′

a
− b′

b

)]

+
kn2

a2

}

(2.3)

Gij =
a2

b2
γij

{

a′

a

(

a′

a
+

2n′

n

)

− b′

b

(

n′

n
+

2a′

a

)

+
2a′′

a
+

n′′

n

}

+
a2

n2
γij

{

ȧ

a

(

2ṅ

n
− ȧ

a

)

− 2ä

a
+

ḃ

b

(

ṅ

n
− 2ȧ

a

)

− b̈

b

}

− kγij (2.4)

G05 = 3

(

n′

n

ȧ

a
+

a′

a

ḃ

b
− ȧ′

a

)

(2.5)

G55 = 3

{

a′

a

(

a′

a
+

n′

n

)

− b2

n2

[

ä

a
+

ȧ

a

(

ȧ

a
− ṅ

n

)]

− kb2

a2

}

, (2.6)

where primes indicate derivatives with respect to y, while dots derivatives with respect to

t. The five-dimensional Einstein equations take the usual form

GAC =
1

2M3
TAC |tot, (2.7)

where

TA
C |tot = TA

C |v,B + TA
C |m,B + TA

C |v,b + TA
C |m,b + TA

C |ind (2.8)

is the total energy-momentum tensor,

TA
C |v,B = diag(−Λ,−Λ,−Λ,−Λ,−Λ) (2.9)

TA
C |v,b = diag(−V,−V,−V,−V, 0)

δ(y)

b
(2.10)

TA
C |m,b = diag(−ρ, p, p, p, 0)

δ(y)

b
. (2.11)

TA
C |m,B is any possible additional energy-momentum in the bulk, the brane matter con-

tent TA
C |m,b consists of a perfect fluid with energy density ρ and pressure p, while the

contributions arising from the scalar curvature of the brane are given by

T 0
0 |ind =

6m2

n2

(

ȧ2

a2
+

kn2

a2

)

δ(y)

b
(2.12)

T i
j |ind =

2m2

n2

(

ȧ2

a2
− 2ȧṅ

an
+

2ä

a
+

kn2

a2

)

δi
j

δ(y)

b
. (2.13)

Assuming a Z2 symmetry around the brane, the singular part of equations (2.7) gives

the matching conditions

a′
o+

aobo
= −ρ + V

12M3
+

rc

2n2
o

(

ȧ2
o

a2
o

+
kn2

o

a2
o

)

(2.14)

n′
o+

nobo

=
2ρ + 3p − V

12M3
+

rc

2n2
o

(

2äo

ao

− ȧ2
o

a2
o

− 2ȧoṅo

aono

− kn2
o

a2
o

)

(2.15)
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(the subscript o denotes the value on the brane), while from the 05, 55 components of

equations (2.7) we obtain

n′
o

no

ȧo

ao

+
a′o
ao

ḃo

bo

− ȧ′o
ao

=
T05

6M3
(2.16)

a′o
ao

(

a′o
ao

+
n′

o

no

)

− b2
o

n2
o

[

äo

ao
+

ȧo

ao

(

ȧo

ao
− ṅo

no

)]

− kb2
o

a2
o

=
T55 − Λb2

o

6M3
, (2.17)

where T05, T55 are the 05 and 55 components of TAC |m,B evaluated on the brane. Sub-

stituting the expressions (2.14), (2.15) in equations (2.16), (2.17), we obtain the semi-

conservation law and the Raychaudhuri equation

ρ̇ + 3
ȧo

ao
(ρ + p) = −2n2

o

bo
T 0

5 (2.18)

(

H2
o +

k

a2
o

)[

1 − r2
c (ρ + 3p − 2V )

24m2

]

+
r2
c (ρ + 3p − 2V )(ρ + V )

144m4

+

(

Ḣo

no
+ H2

o

)[

1 − r2
c

2

(

H2
o +

k

a2
o

)

+
r2
c (ρ + V )

12m2

]

=
Λ − T 5

5

6M3
, (2.19)

where Ho = ȧo/aono is the Hubble parameter of the brane. One can easily check that in

the limit m → 0, equation (2.19) reduces to the corresponding second order equation of

the model without R̂ [2]. Energy exchange between the brane and the bulk has also been

investigated in [9 – 11].

Since only the 55 component of TAC |m,B enters equation (2.19), one can derive a

cosmological system that is largely independent of the bulk dynamics, if at the position of

the brane the contribution of this component relative to the bulk vacuum energy is much

less important than the brane matter relative to the brane vacuum energy, or schematically

∣

∣

∣

∣

T 5
5

Λ

∣

∣

∣

∣

¿
∣

∣

∣

∣

ρ

V

∣

∣

∣

∣

. (2.20)

Then, for |Λ| not much larger than the Randall-Sundrum value V 2/12M3, the term T 5
5 in

equation (2.19) can be ignored. Alternatively, the term T 5
5 can be ignored in equation (2.19)

if simply
∣

∣

∣

∣

T 5
5

Λ

∣

∣

∣

∣

¿ 1. (2.21)

Note that relations (2.20) and (2.21) are only boundary conditions for T 5
5 , which in a

realistic description in terms of bulk fields will be translated into boundary conditions on

these fields. In the special case where (2.20), (2.21) are valid throughout the bulk, the

latter remains unperturbed by the exchange of energy with the brane.

One can now check that a first integral of equation (2.19) is

H4
o − 2H2

o

3

(

ρ + V

2m2
+

6

r2
c

− 3k

a2
o

)

+

(

ρ + V

6m2
− k

a2
o

)2

+

+
4

r2
c

(

Λ

12M3
− k

a2
o

)

− χ

3r2
c

= 0, (2.22)
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with χ satisfying

χ̇ + 4noHoχ =
r2
cn

2
o T

m2bo

(

H2
o − ρ + V

6m2
+

k

a2
o

)

, (2.23)

and T = 2T 0
5 is the discontinuity across the brane of the 05 component of the bulk energy-

momentum tensor. The solution of (2.22) for Ho is

H2
o =

ρ + V

6m2
+

2

r2
c

− k

a2
o

± 1√
3rc

[

2(ρ + V )

m2
+

12

r2
c

− Λ

M3
+ χ

]
1

2

, (2.24)

and equation (2.23) becomes

χ̇ + 4noHoχ =
2n2

o T

m2bo

{

1 ± rc

2
√

3

[

2(ρ + V )

m2
+

12

r2
c

− Λ

M3
+ χ

]
1

2
}

. (2.25)

At this point we find it convenient to employ a coordinate frame in which bo = no = 1

in the above equations. This can be achieved by using Gauss normal coordinates with

b(t, z) = 1, and by going to the temporal gauge on the brane with no = 1. It is also

convenient to define the parameters

λ =
2V

m2
+

12

r2
c

− Λ

M3
(2.26)

µ =
V

6m2
+

2

r2
c

(2.27)

γ =
1

12m2
(2.28)

β =
1√
3rc

. (2.29)

For a perfect fluid on the brane with equation of state p = wρ our system is described by

equations (2.18), (2.24), (2.25), which simplify to (we omit the subscript o in the following)

ρ̇ + 3(1 + w)Hρ = −T (2.30)

H2 = µ + 2γρ ± β
√

λ + 24γρ + χ − k

a2
(2.31)

χ̇ + 4Hχ = 24γT

(

1 ± 1

6β

√

λ + 24γρ + χ

)

, (2.32)

while the second order equation (2.19) for the scale factor becomes

ä

a
= µ − (1 + 3w)γρ ± β

λ + 6(1 − 3w)γρ√
λ + 24γρ + χ

. (2.33)

Finally, setting ψ ≡
√

λ + 24γρ + χ, equations (2.31), (2.32), (2.33) take the form

H2 = µ + 2γρ ± βψ − k

a2
(2.34)

ψ̇ + 2H

(

ψ − λ + 6(1 − 3w)γρ

ψ

)

= ±2γT

β
(2.35)
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ä

a
= µ − (1 + 3w)γρ ± β

λ + 6(1 − 3w)γρ

ψ
. (2.36)

Throughout, we will assume T (ρ) = Aρν , with ν > 0, A constant parameters [2, 12]. Notice

that the system of equations (2.30)–(2.32) has the influx-outflow symmetry T → −T ,

H → −H, t → −t. For T = 0 the system reduces to the cosmology studied in [13].

We will be referring to the upper (lower) ± solution as Branch A (Branch B). We shall

be interested in a model that reduces to the Randall-Sundrum vacuum in the absence of

matter, i.e. it has vanishing effective cosmological constant. This is achieved for µ = ∓β
√

λ,

which, given that m2V + 12M6 is negative (positive) for branches A (B), is equivalent to

the fine-tuning Λ = −V 2/12M3. Notice that for Branch A, V is necessarily negative.

Cosmologies with negative brane tension in the induced gravity scenario have also been

discussed in [14].

Consider the case k = 0. The system possesses the obvious fixed point (ρ∗,H∗, ψ∗) =

(0, 0,
√

λ). However, for sgn(H)T < 0 there are non-trivial fixed points, which are found

by setting ρ̇ = ψ̇ = 0 in equations (2.30), (2.35). For w ≤ 1/3 these are:

2T (ρ∗)
2

9(1 + w)2ρ2
∗

= 2µ + (1 − 3w)γρ∗

±
√

9(1 + w)2γ2ρ2
∗ + 4β2[λ + 6(1 − 3w)γρ∗] (2.37)

H∗ = − T (ρ∗)

3(1 + w)ρ∗
(2.38)

ψ2
∗ ±

3(1 + w)

β
γρ∗ψ∗ − [λ + 6(1 − 3w)γρ∗] = 0. (2.39)

Equation (2.36) gives

(

ä

a

)

∗

=
T (ρ∗)

2

9(1 + w)2ρ2
∗

, (2.40)

which is positive, and also, it has the same form (as a function of ρ∗) as in the absence of

R̂. The deceleration parameter is found to have the value

q∗ = −1, (2.41)

which means Ḣ∗ = 0. Furthermore, at this fixed point we find

Ωm∗ ≡
2γρ∗
H2

∗

=
18(1 + w)2

A2
γρ3−2ν

∗ . (2.42)

Equation (2.37), when expressed in terms of Ωm∗, has only one root for each branch

ρ∗ =
β

2γ

6(1 − 3w)β ±
√

λ(1 − 3w − 4Ω−1
m∗)

(2Ω−1
m∗ + 1 + 3w)(Ω−1

m∗ − 1)
. (2.43)

However, it can be seen from (2.43) that for −1 ≤ w ≤ 1/3 and Ωm∗ < 1 the Branch B is in-

consistent with equation (2.37). On the contrary, Branch A with −1 ≤ w ≤ 1/3 and Ωm∗ <

1 is consistent for 0 < 6(1 − 3w)β +
√

λ(1 − 3w − 4Ω−1
m∗) < 3

√

4(1 − 3w)2β2 − (1 + w)2λ.
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Thus, since we are interested in realizing the present universe as a fixed point, Branch B

should be rejected, and from now on we will only consider Branch A. So, we have seen

until now that for negative brane tension, we can have a fixed point of our model with

acceleration and 0 < Ωm∗ < 1. This behavior is qualitatively different from the one ob-

tained in the context of the model presented in [2] (for −1/3≤w≤1/3), where for positive

brane tension we have Ωm∗ > 2, while for negative brane tension the universe necessarily

exhibited deceleration; therefore, in that model the idea that the present universe is close

to a fixed point could not be realized.

Concerning the negative brane tension the following remarks are in order: (a) In the

conventional, non-supersymmetric setting, it is well known that a negative tension brane

with or without induced gravity is accompanied by tachyonic bulk gravitational modes [15];

however, including the Gauss-Bonnet corrections relevant at high-energies, the tachyonic

modes can be completely removed for a suitable range of the parameters [16]. (b) As

shown in [17], in supersymmetric theories, spacetimes with two branes of opposite tension

are stable; in particular, there is no instability due to expanding “balooning” modes on

the negative brane. It is, however, unclear what happens in models with supersymmetry

unbroken in the bulk but softly broken on the brane. (c) Finally, it has been shown [18]

that with appropriate choice of boundary conditions, both at the linearized level as well

as in the full theory, the gravitational potential of a mass on a negative tension brane has

the correct 1/r attractive behaviour.

3. Critical point analysis

We shall restrict ourselves to the flat case k = 0. In order to study the dynamics of the

system, it is convenient to use (dimensionless) flatness parameters such that the state space

is compact [19]. Defining

ωm =
2γρ

D2
, ωψ =

βψ

D2
, Z =

H

D
, (3.1)

where D =
√

H2 − µ, we obtain the equations

ωm + ωψ = 1 (3.2)

ω′
m = ωm

[

(1 + 3w)(ωm− 1)Z − A
√

|µ|

(|µ|ωm

2γ

)ν−1

(1 − Z2)
3

2
−ν

− 2Z(1 − Z2)
1 − Z2 − 3(1 − 3w)β2µ−1ωm

1 − ωm

]

(3.3)

Z ′ = (1 − Z2)

[

(1 − Z2)
1 − Z2 − 3(1 − 3w)β2µ−1ωm

1 − ωm
− 1

− 1 + 3w

2
ωm

]

, (3.4)

with ′ = d/dτ = D−1d/dt. Note that −1 ≤ Z ≤ 1, while both ω’s satisfy 0 ≤ ω ≤ 1. The

deceleration parameter is given by

q =
1

Z2

[

1 + 3w

2
ωm − (1 − Z2)

ωm −Z2 − 3(1 − 3w)β2µ−1ωm

1 − ωm

]

(3.5)
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ν < 3/2 ν = 3/2 ν > 3/2

No. of F.P. 1 0 or 1 1

Nature A A S

Table 1: The fixed points for w = 0, influx.

and H ′ = −HZ(q+1). The system of equations (3.3)–(3.4) inherits from equations (2.30)–

(2.32) the symmetry A → −A, Z → −Z, τ → −τ . The system written in the new variables

contains only three parameters. However, going back to the physical quantities H, ρ one

will need specific values of two more parameters.

It is obvious that the points with |Z| = 1 have H = ∞. Therefore, from (2.34) it

arises that the infinite density ρ = ∞ big bang (big crunch) singularity, when it appears, is

represented by one of the points with Z = 1 (Z = −1). The points with ωm = 1, |Z| 6=1, 0

have ω′
m = ∞, Z ′ = ∞ and finite ρ, H; for w ≤ 1/3, one has in addition ä/a = +∞, i.e.

divergent 4D curvature scalar on the brane.

The system possesses, generically, the fixed point (a) (ωm∗, ωψ∗, Z∗) = (0, 1, 0), which

corresponds to the fixed point (ρ∗,H∗, ψ∗) = (0, 0,
√

λ) discussed above. For ν≤3/2 there

are in addition the fixed points (b) (ωm∗, ωψ∗, Z∗) = (0, 1, 1) and (c) (ωm∗, ωψ∗, Z∗) =

(0, 1,−1). All these critical points are either non-hyperbolic, or their characteristic matrix

is not defined at all; thus, their stability cannot be studied by first order perturbation

analysis. In cases like these, one can find non-conventional behaviors (such as saddle-nodes

and cusps [20]) of the flow-chart near the critical points. There are two more candi-

date fixed points (d) (ωm∗, ωψ∗, Z∗) = (1, 0, 1) and (e) (ωm∗, ωψ∗, Z∗) = (1, 0,−1), whose

existence cannot be confirmed directly from the dynamical system, since they make equa-

tions (3.3), (3.4) undetermined. Apart from the above, there are other critical points

given by

A
√

|µ|

(|µ|ωm∗

2γ

)ν−1
= − 3(1 + w)Z∗

(1 − Z2
∗ )

3

2
−ν

(3.6)

(1 + 3w)ω2
m∗+ (1 − 3w)

[

1 − 6β2

µ
(1 − Z2

∗ )
]

ωm∗− 2[1 − (1 − Z2
∗ )

2] = 0. (3.7)

They exist only for AZ∗ <0 and correspond to the ones given by equations (2.37)–(2.39).

For the physically interesting case w = 0 with influx we scanned the parameter space and

were convinced that for ν 6= 3/2 there is always only one fixed point; for ν < 3/2 this is

an attractor (A), while for ν > 3/2 this is a saddle (S). For w = 0, ν = 3/2 there is either

one fixed point (attractor) or no fixed points, depending on the parameters. For the other

characteristic value w = 1/3, we concluded that for ν < 3/2 there is only one fixed point

(attractor), for ν > 2 there is only one fixed point (saddle), while for 3/2 < ν < 2 there are

either two fixed points (one attractor and one saddle) or no fixed points at all, depending

on the parameters. For w = 1/3, ν = 3/2 there is either one fixed point (attractor) or no

fixed points. Finally, for w = 1/3, ν = 2 there is either one fixed point (saddle) or no fixed

points. These results were obtained numerically for a wide range of parameters and are

summarized in tables 1 and 2.

– 8 –



J
H
E
P
0
1
(
2
0
0
6
)
1
0
7

ν < 3/2 ν = 3/2 3/2 < ν < 2 ν = 2 ν > 2

No. of F.P. 1 0 or 1 0 or 2 0 or 1 1

Nature A A A,S S S

Table 2: The fixed points for w = 1/3, influx.

The approach to an attractor described by the linear approximation of (3.3)–(3.4) is

exponential in τ and takes infinite time τ for the universe to reach it. Given that near this

fixed point the relation between the cosmic time t and the time τ is linear, we conclude

that it also takes infinite cosmic time to reach the attractor.

Defining ε = sgn(H), we see from (3.3)–(3.4) that the lines Z = ε (ν ≤ 3/2), ωm = 0

are orbits of the system. Furthermore, the family of solutions with Z ≈ ε and dZ/dωm =

Z ′/ω′
m ≈ 0 is approximately described for ν < 3/2 by ω′

m = ε(1 + 3w)ωm(ωm − 1), and

thus, they move away from the point (ωm∗, Z∗) = (1, 1), while they approach the point

(ωm∗, Z∗) = (1,−1). In addition, the solution of this equation is ωm = [1 + ceε(1+3w)τ ]−1,

with c > 0 an integration constant. Using this solution in equation H ′/H = −Z(q + 1) we

find that for w = 1/3, H/Ho =
√

ωm/(1 − ωm), where Ho is another integration constant.

Then, the equation for ωm(t) becomes dωm/dt = −2εωm

√

H2
oωm − µ(1 − ωm)2, and can be

integrated giving t as a function of ωm or H. Therefore, in the region of the big bang/big

crunch singularity one obtains a(t)∼
√

εt, ρ(t)∼ t−2, as in the standard radiation dominated

big-bang scenario. This means that for ν < 3/2 the energy exchange has no observable

effects close to the big bang/big crunch singularity.

Since our proposal relies on the existence of an attractor, we shall restrict ourselves to

the case ν < 3/2. It is convenient to discuss the four possible cases separately:

(i) w = 0 with influx. The generic behavior of the solutions of equations (3.3)–(3.4)

is shown in figure 1. We see that all the expanding solutions approach the global

attractor. Furthermore, there is a class of collapsing solutions which bounce to ex-

panding ones. Finally, there are solutions which collapse all during their lifetime to

a state with finite ρ and H. The physically interesting solutions are those in the

upper part of the diagram emanating from the big bang (ω,Z) ≈ (1, 1). These so-

lutions start with a period of deceleration. The subsequent evolution depends on

the value of 3β2/|µ|, which determines the relative position of the dashed and dotted

lines. Specifically, for 3β2/|µ| > 1 (the case of figure 1) one distinguishes two pos-

sible classes of universe evolution. In the first, the universe crosses the dashed line

entering the acceleration era still with wDE > −1, and finally it crosses the dotted

line to wDE < −1 approaching the attractor. In the second, while in the deceleration

era, it first crosses the dotted line to wDE < −1, and then the dashed line entering

the eternally accelerating era. For 3β2/|µ|≤1, the dotted line lies above the dashed

line, and, consequently, only the second class of trajectories exists. To connect with

the discussion in the introduction, notice that the Friedmann equation (2.34) can be

written in the form (1.1) with dark energy ρDE = (βψ + µ)/2γ. Using (2.35), the
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Figure 1: Influx, w = 0, ν < 3/2. The arrows show the direction of increasing cosmic time. The

dotted line corresponds to wDE = −1. The region inside (outside) the dashed line corresponds to

acceleration (deceleration). The region with Z > 0 represents expansion, while Z < 0 represents

collapse. The present universe is supposed to be close to the global attractor.
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Figure 2: Outflow, w = 1/3, ν < 3/2. The arrows show the direction of increasing cosmic time.

The region inside (outside) the dashed line corresponds to acceleration (deceleration). The region

with Z > 0 represents expansion, while Z < 0 represents collapse.

equation for ρDE takes the form (1.3) with

wDE =
−1

3(1 − ωm)

[

2Z2 − ωm − 1 − 6(1 − 3w)
β2

µ

ωm(1 − Z2)

Z2 − ωm

]

. (3.8)

The global attractor (2.37)–(2.39) satisfies relations (1.4) and consequently, wDE

evolves to the value wDE∗ given by (1.5). As for the bouncing solutions, they approach

the attractor after they cross the line Z2 = ωm, where wDE jumps from +∞ to −∞;

however, the evolution of the observable quantities is regular.

(ii) w = 0 with outflow. The generic behavior in this case is obtained from figure 1 by
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the substitution Z→−Z and τ → −τ , which reflects the diagram with respect to the

ωm axis and converts attractors to repelers.

(iii) w = 1/3 with outflow. Figure 2 depicts the flow diagram of this case. Even though

in the case of radiation in general wDE > −1/3 from equation (3.8), there are both

acceleration and deceleration regions. Furthermore, from equation (1.5) it is Ωm∗ > 1.

(iv) w = 1/3 with influx. This arises like in (ii) by reflection of figure 2 and resembles

figure 1.

4. Conclusions

In this work, we studied the role of brane-bulk energy exchange on the cosmological evo-

lution of a brane with negative tension, zero effective cosmological constant, and in the

presence of the induced curvature scalar term in the action. Adopting the physically mo-

tivated ρν power-law form for the energy transfer and assuming a cosmological constant

in the bulk, an autonomous system of equations was isolated. In this scenario, the “dark

energy” is a result of the geometry and the brane-bulk energy exchange. The negative

tension of the brane is necessary in order to realize the present universe (accelerating with

0 < Ωm0 < 1) as being close to a future fixed point of the evolution equations. We studied

the possible cosmologies using bounded normalized variables and the corresponding global

phase portraits were obtained. By studying the number and nature of the fixed points we

demonstrated numericaly that our present universe can be easily realized as a late-time

fixed point of the evolution. This provides an alternative answer to the coincidence problem

in cosmology, which does not require specific fine-tuning of the initial data. Furthermore,

the equation of state for the dark energy at the attractor is uniquely specified by the value

Ωm0. Remarkably, for Ωm0 = 0.3, one obtains wDE,0 = −1.4, independently of the other

parameters, while for the other suggestive value Ωm0 = 0.03, wDE,0 = −1.03. In the past,

the function wDE crosses the line wDE = −1 to larger values.

It would be interesting to investigate if the above partial success of the present scenario

persists after one tries to fit the supernova data and the detailed CMB spectum [21]. Of

course, the nature of the content of the bulk and of the mechanism of energy exchange

with the brane is another crucial open question, which we hope to deal with in a future

publication.
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